A TABLE OF PRIMITIVE BINARY POLYNOMIALS

MIODRAG ŽIVKOVIĆ

ABSTRACT. For those n < 5000 for which the factorization of $2^n - 1$ is known, the first primitive trinomial (if such exists) and a randomly generated primitive 5- and 7-nomial of degree n in GF(2) are given.

A primitive polynomial of degree n over GF(2) is useful for generating a pseudorandom sequence of n-tuples of zeros and ones, see [8]. If the polynomial has a small number k of terms, then the sequence is easily computed. But for cryptological applications (correlation attack, see [5]) it is often necessary to have the primitive polynomials with larger values of k than one can find in the existing tables. For example, Zierler and Brillhart [10, 11] have calculated all irreducible trinomials of degree $n \le 1000$, with the period for some for which the factorization of $2^n - 1$ is known; Stahnke [7] has listed one example of a trinomial or pentanomial of degree $n \le 168$; Zierler [12] has listed all primitive trinomials whose degree is a Mersenne exponent $\le 11213 = M_{23}$ (there, M_j denotes the *j*th Mersenne exponent); Rodemich and Rumsey [6] have listed all primitive trinomials of degree M_j , $12 \le j \le 17$; Kurita and Matsumoto [2] have listed all primitive trinomials of degree M_j , $8 \le j \le 28$, and one example of primitive pentanomials of degree M_j , $8 \le j \le 27$.

Here we give (see Table 1 in the Supplement section) one primitive binary k-nomial (k-term polynomial) of degree n (if such exists and the factorization of $2^n - 1$ is known) for $2 \le n \le 5000$, $k \in \{3, 5, 7\}$. For chosen n and k, we have the polynomial $1 + x^n + \sum x^a$, where a takes the values from the entry at the intersection of the row n and the column k.

The 5- and 7-nomials listed in Table 1 were obtained using a random number generator. Randomly chosen k-nomials of degree n are checked for primitivity (see [9], for example) and rejected until a primitive polynomial is found. The trinomials were tested in the natural order.

The primitivity check is carried out using the factorizations of $2^n - 1$ from [1], and also from [3] $(2^{512} + 1)$, [4] $(2^{484} + 1)$. These factorizations are known for all $n \le 310$, and for some $n \le 2460$, where $2^n - 1$ is not a Mersenne prime. An asterisk in front of n in Table 1 means that $2^n - 1$ contains "probably a prime" factor [1], i.e., a factor without the complete primality proof.

Received by the editor April 3, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11T06, 11T71.

Key words and phrases. Primitive polynomials, finite field.

This research was supported by Science Fund of Serbia, grant number 0401A, through Matematički Institut.

MIODRAG ŽIVKOVIĆ

Bibliography

- 1. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorization of $b^n \pm 1$, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, 2nd ed., Contemp. Math., vol. 22, Amer. Math. Soc., Providence, RI, 1988.
- 2. Y. Kurita and M. Matsumoto, Primitive t-nomials (t = 3, 5) over GF(2) whose degree is a Mersenne exponent ≤ 44497 , Math. Comp. 56 (1991), 817–821.
- 3. A. K. Lenstra et al., a note in *Editor's corner*, IACR Newsletter 7, no. 2 (June 1990), 1-2.
- 4. A. K. Lenstra and M. S. Manasse, *Factoring with two large primes*, Advances in Cryptology—EUROCRYPT'90, Lecture Notes in Comput. Sci., vol. 473, Springer-Verlag, Berlin and New York, 1991, pp. 77–82.
- 5. W. Meier and O. Staffelbach, *Fast correlation attacks on certain stream ciphers*, J. Cryptology **1** (1989), 159–176.
- 6. E. R. Rodemich and H. Rumsey, Jr., *Primitive trinomials of high degree*, Math. Comp. 22 (1968), 863-865.
- 7. W. Stahnke, Primitive binary polynomials, Math. Comp. 27 (1973), 977-980.
- 8. R. C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math. Comp. 19 (1965), 201-209.
- 9. E. J. Watson, Primitive polynomials (mod 2), Math. Comp. 16 (1962), 368-369.
- 10. N. Zierler and J. Brillhart, On primitive trinomials (mod 2), Inform. and Control 13 (1968), 541–554.
- 11. ____, On primitive trinomials (mod 2). II, Inform. and Control 14 (1969), 566–569.
- 12. N. Zierler, *Primitive trinomials whose degree is a Mersenne exponent*, Inform. and Control **15** (1969), 67-69.

INSTITUTE FOR APPLIED MATHEMATICS AND ELECTRONICS, BEOGRAD, YUGOSLAVIA