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A TABLE OF PRIMITIVE BINARY POLYNOMIALS

MIODRAG ZIVKOVIC

ABSTRACT. Forthose n < 5000 for which the factorization of 2”—1 is known,
the first primitive trinomial (if such exists) and a randomly generated primitive
5- and 7-nomial of degree n in GF(2) are given.

A primitive polynomial of degree n over GF(2) is useful for generating a
pseudorandom sequence of n-tuples of zeros and ones, see [8]. If the polyno-
mial has a small number k of terms, then the sequence is easily computed. But
for cryptological applications (correlation attack, see [5]) it is often necessary to
have the primitive polynomials with larger values of k& than one can find in the
existing tables. For example, Zierler and Brillhart [10, 11] have calculated all
irreducible trinomials of degree » < 1000, with the period for some for which
the factorization of 2" — 1 is known; Stahnke [7] has listed one example of a
trinomial or pentanomial of degree n < 168 ; Zierler [12] has listed all primitive
trinomials whose degree is a Mersenne exponent < 11213 = Mj3 (there, M;
denotes the jth Mersenne exponent); Rodemich and Rumsey [6] have listed
all primitive trinomials of degree A;, 12 < j < 17; Kurita and Matsumoto
[2] have listed all primitive trinomials of degree M;, 24 < j < 28, and one
example of primitive pentanomials of degree M;, 8 < j <27.

Here we give (see Table 1 in the Supplement section) one primitive binary
k-nomial (k-term polynomial) of degree n (if such exists and the factorization
of 2" —1 is known) for 2 < n < 5000, k € {3,5,7}. For chosen n and
k , we have the polynomial 1+ x" + > x%, where a takes the values from the
entry at the intersection of the row » and the column k.

The 5- and 7-nomials listed in Table 1 were obtained using a random number
generator. Randomly chosen k-nomials of degree #n are checked for primitivity
(see [9], for example) and rejected until a primitive polynomial is found. The
trinomials were tested in the natural order.

The primitivity check is carried out using the factorizations of 2” — 1 from
[1], and also from [3] (2°'2+1), [4] (2*8* +1). These factorizations are known
forall n < 310, and for some n < 2460, where 2" —1 is not a Mersenne prime.
An asterisk in front of »n in Table 1 means that 2" — 1 contains “probably a
prime” factor [1], i.e., a factor without the complete primality proof.
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