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A TABLE OF PRIMITIVE BINARY POLYNOMIALS 

MIODRAG ZIVKOVIC 

ABSTRACT. For those n < 5000 for which the factorization of 2n - 1 is known, 
the first primitive trinomial (if such exists) and a randomly generated primitive 
5- and 7-nomial of degree n in GF(2) are given. 

A primitive polynomial of degree n over GF(2) is useful for generating a 
pseudorandom sequence of n-tuples of zeros and ones, see [8]. If the polyno- 
mial has a small number k of terms, then the sequence is easily computed. But 
for cryptological applications (correlation attack, see [5]) it is often necessary to 
have the primitive polynomials with larger values of k than one can find in the 
existing tables. For example, Zierler and Brillhart [10, 11] have calculated all 
irreducible trinomials of degree n < 1000, with the period for some for which 
the factorization of 2n _ 1 is known; Stahnke [7] has listed one example of a 
trinomial or pentanomial of degree n < 168; Zierler [ 12] has listed all primitive 
trinomials whose degree is a Mersenne exponent < 11213 = M23 (there, Mj 
denotes the jth Mersenne exponent); Rodemich and Rumsey [6] have listed 
all primitive trinomials of degree Mj, 12 < j < 17; Kurita and Matsumoto 
[2] have listed all primitive trinomials of degree MjA, 24 < j < 28, and one 
example of primitive pentanomials of degree Mj, 8 < j < 27. 

Here we give (see Table 1 in the Supplement section) one primitive binary 
k-nomial (k-term polynomial) of degree n (if such exists and the factorization 
of 2n - 1 is known) for 2 < n < 5000, k E {3, 5, 7}. For chosen n and 
k, we have the polynomial 1 + Xn + E Xa, where a takes the values from the 
entry at the intersection of the row n and the column k. 

The 5- and 7-nomials listed in Table 1 were obtained using a random number 
generator. Randomly chosen k-nomials of degree n are checked for primitivity 
(see [9], for example) and rejected until a primitive polynomial is found. The 
trinomials were tested in the natural order. 

The primitivity check is carried out using the factorizations of 2n - 1 from 
[1], and also from [3] (2512 + 1), [4] (2484 + 1). These factorizations are known 
for all n < 310, and for some n < 2460, where 2n- 1 is not a Mersenne prime. 
An asterisk in front of n in Table 1 means that 2n - 1 contains "probably a 
prime" factor [1], i.e., a factor without the complete primality proof. 
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